High Confidence Groundwater Reserve Determination Study for the Berg Catchment

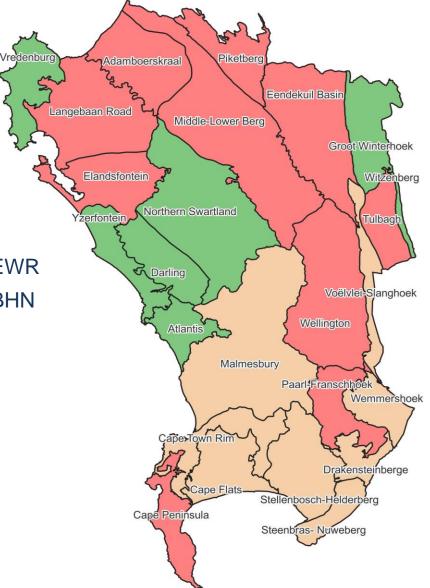
Monitoring Programme – PSC 05

Presented by: Date: Umvoto 22 November 2023

WATER IS LIFE - SANITATION IS DIGNITY

water & sanitation

Department: Water and Sanitation **REPUBLIC OF SOUTH AFRICA**



EARTH | WATER | SCIENCE | LIFE

PRESENTATION OUTLINE

- 1. Monitoring Programme Report
 - a) National Policy & IWRM
 - b) Assigning Management Options
 - Groundwaters Contribution to EWR
 - Groundwaters Contribution to BHN
 - c) Defining Management Objectives
 - d) Monitoring Site Selection
 - e) Limitations
- 2. Discussion
- 3. Capacity Building Programme
- 4. Management Tasks and Deliverables
- 5. **Programme of Upcoming Activities**

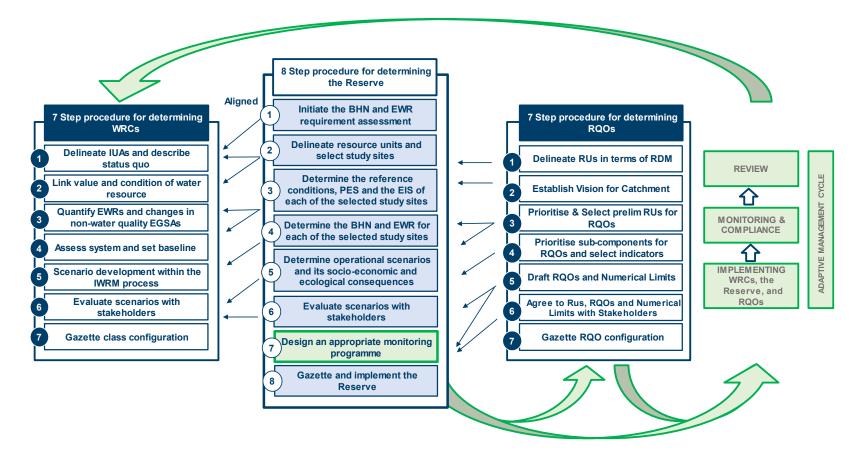
SUMMARY OF PROJECT PHASES, TASKS AND DELIVERABLES

Phase 1	Project inception					
Task 1	Inception		Deliverable 1: Inception Report			
Phase 2	Review of water resource information and data					
Task 2.1	Data collection and collation		Deliverable 2.1: Gap Analysis Report Deliverable 2.2: Inventory of Water Resource Models			
Phase 3	Reserve	determination				
Task 3.1	Step 1	Initiate Groundwater Reserve Study	Recorded in Deliverable 2.1 and Deliverable 2.2			
Task 3.2	Step 2	Water RU Delineation	Deliverable 3.1: Delineation of Water RUs			
Task 3.3	Step 3	Ecological Status and Reference Conditions per RU	Deliverable 3.2: Ecological Reference Conditions			
Task 3.4	Step 4	Determine BHN and EWR	Deliverable 3.3: BHN and EWR Requirement Report			
Task 3.5	Step 5 Operational Scenarios & Socio- economic		Deliverable 3.4: Operational Scenarios & socio-economic and ecological consequences			
Task 3.6	Step 6	Evaluate scenarios with Stakeholders	Deliverable 3.5: Stakeholder engagement of operation scenarios			
Task 3.7	Step 7	Monitoring Programme	Deliverables 3.6: Monitoring Programme Report			
Task 3.8	Step 8	Gazette & implement Reserve	Deliverable 3.7: Groundwater Reserve Determination Report Deliverable 3.8: Database Deliverable 3.9: Gazette Template			

STEP 7 GRDM OBJECTIVES DESIGNING A MONITORING PROGRAMME

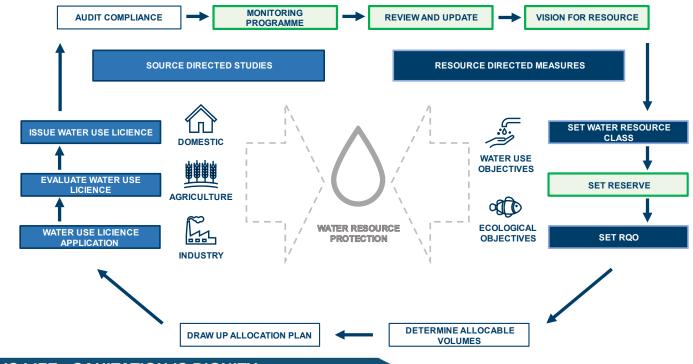
- 1. Review existing monitoring programmes and assess the spatial distribution of the current monitoring sites to evaluate their alignment with the new monitoring objectives designed to safeguard the groundwater Reserve.
- 2. Develop a monitoring programme for the Berg catchments groundwater Reserve considering the hydraulic characteristics of the groundwater resource, as well as both the present state and future scenarios of identified groundwater systems.
- 3. In instances where existing monitoring programs are not implemented or where they are deemed ineffective for maintaining the groundwater Reserve, recommendations will be put forward to the DWS.

NATIONAL POLICY AND IWRM


POLICY OVERVIEW

The Minister of Water and Sanitation serves as the public trustee for water resources and carries the overarching responsibility for all aspects of water resource management. However, to manage these resources effectively, the intention is to **decentralize levels of responsibility to local management authorities over time.** This transition is facilitated by national policies and a regulatory framework provided by various directorates within the DWS.

The Chief Directorate: Water Ecosystems Management (CD: WEM) is responsible for formulating protection strategies, supported by other water management initiatives, that focus on specific compliance interventions. Within the CD: WEM, these protection levels and "vision" for the catchment are defined by **Resource Directed Measures (RDM)**, which include the Classification, the Reserve, and RQOs, and **Source Directed Studies (SDS)**, which pertain to licencing, pollution prevention, remediation, and managing emergency incidents (WRC, 2007).

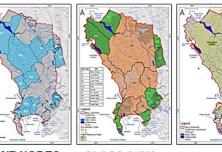

Monitoring Programme

According to NWA, the Reserve determination process must follow the 8-step procedure outlined in the RDM manuals. The aim of Step 7 is to **develop an appropriate monitoring program** for the Berg catchment specifically related to safeguarding groundwaters contribution to the Reserve (i.e., its **contribution to the EWR and BHN Reserves**).

INTERGRATED WATER RESOURCE MANAGEMENT

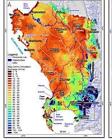
Groundwater monitoring, in the context of the groundwater Reserve, seeks to measure the responses of groundwater systems to various influences, including recharge, discharge, and abstraction. However, multiple other factors, not only those related to RDM and SDS, may affect a single resource, which is presently monitored using only a single set of RQOs. Consequently, various management policies, from different governmental departments or directorates, need to be collated and continually reassessed to incorporate and ensure effective management.

GROUNDWATER MANAGEMENT LEVELS


Groundwater monitoring in RSA operates at three levels: This multi-tiered approach enables effective and comprehensive groundwater resource management.

- The DWS oversees <u>national-level monitoring</u>, providing a broad perspective on groundwater resources for planning and management, including reference data for assessing GRUs.
- <u>Regional monitoring</u>, conducted by CMAs, offers valuable insights for management (catchmentscale data) within the context of GRDM.
- <u>Local-level monitoring</u>, carried out by water users and relevant entities, collects site-specific data, primarily for compliance assessment with licensing conditions.

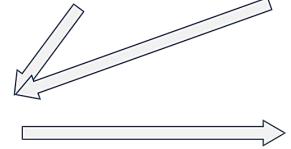
Level	Management		Scientific Focus		Time Frame
1	National	DWS	Referential	Countrywide Status of Water Resources	Long Term
2	Regional	DWS CMA Water Service Authority	Proactive or Reactive Control	Response of GRUs and Supporting Systems	Medium Term
3	Local	Water User Water Use Association Water Service Institution	Auditing	Compliance with WUL Conditions	Short Term


DEFINING MANAGEMENT OPTIONS

WATER RESOURCE COMPONENTS TO CONSIDER

EWR NODES

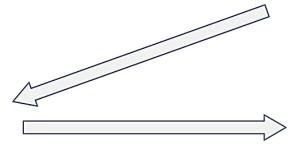
CLASS & IUAs SWSA & GDEs


RECAHRGE

WATER USE

WATER QUALITY AQUIFER TYPE

GEOLOGY

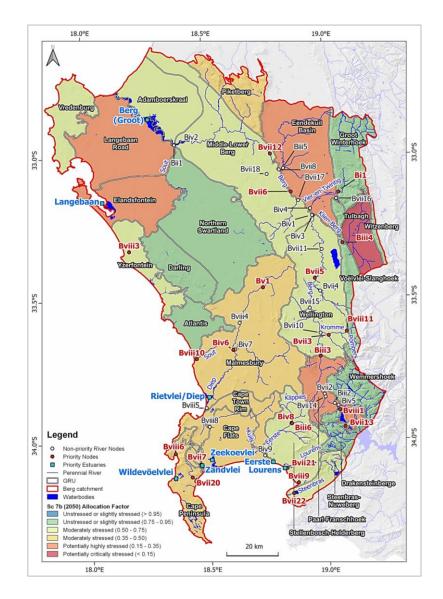


GW TO BHN

MONITORING PROGRAMME

MOST LIKELY SCENARIO

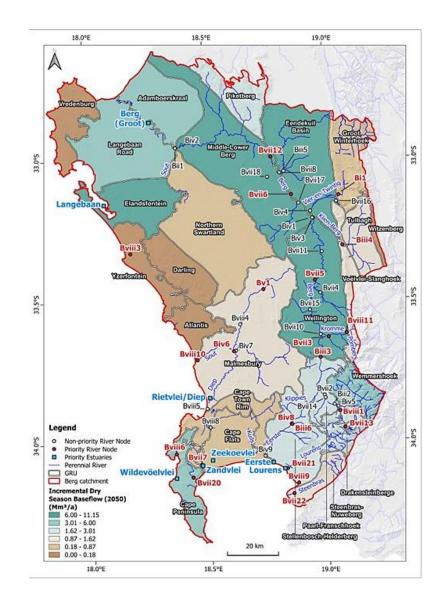
The groundwater Reserve is presented at a GRU scale, comprising of both the BHN and EWR Reserves, each influenced by distinct yet interconnected factors. The criteria for defining a "groundwater management option" at the GRU level should be viewed separately for:

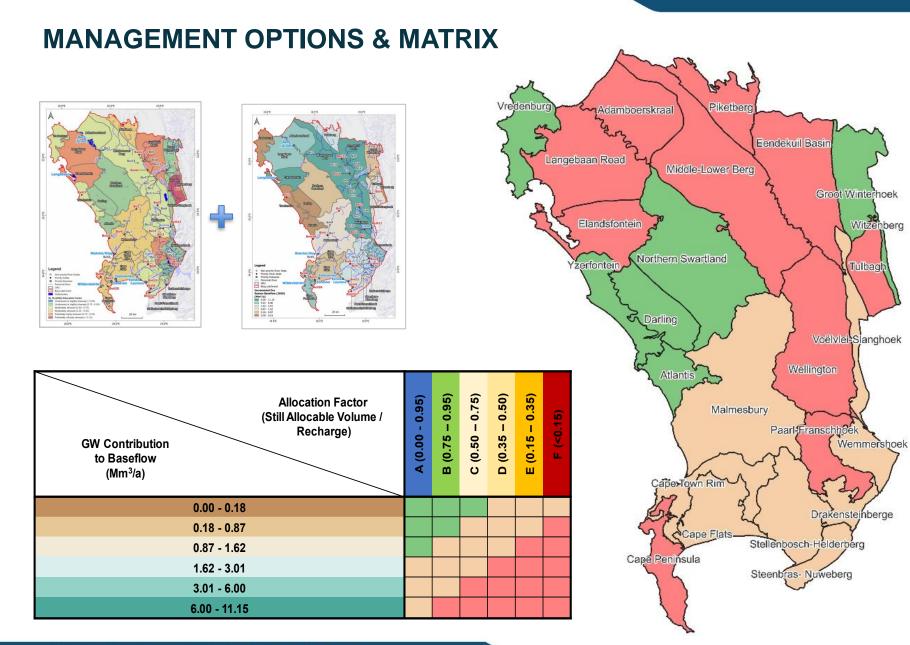

- 1. Groundwater's contribution to the EWR (Allocation Factor vs. Baseflow Contribution to EWR Sites)
- 2. Groundwater's contribution to BHN (Groundwater's contribution to the BHN Reserve vs. Population Density)

GROUNDWATERS CONTRIBUTION TO THE EWR RESERVE

MANAGEMENT OPTIONS FOR GROUNDWATERS CONTRIBUTION TO THE EWR RESERVE

Allocation Factor: Completed as part of Deliverable 3.5 (i.e., SC 07b – Most Likely Future Scenario)

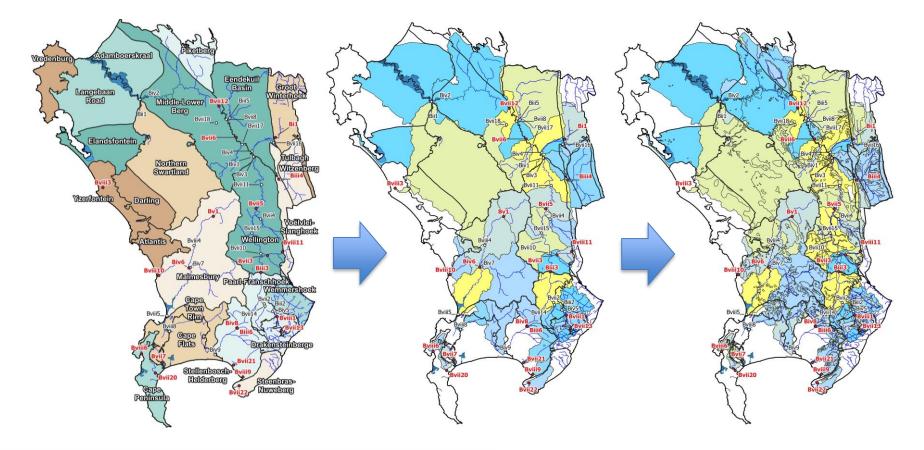

Allocation Category	Description	Allocation Factor	
Α	Unstressed or	>0.95	
В	slightly stressed	0.75 - 0.95	
С	Modoratolyatropped	0.5 - 0.75	
D	Moderately stressed	0.35 - 0.50	
E	Potentially highly stressed	0.15 - 0.35	
F	Potentially critically stressed	<0.15	



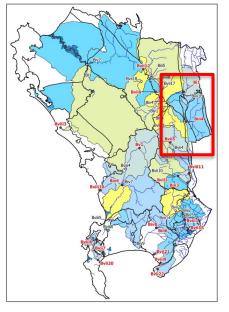
MANAGEMENT OPTIONS FOR GROUNDWATERS CONTRIBUTION TO THE EWR RESERVE

Baseflow: Groundwaters Contribution to Baseflow, Completed as part of Deliverable 3.5 (i.e., SC 07b – Most Likely Future Scenario)

Groundwaters Contribution to EWR (M m ³ /a)
0.00 - 0.18
0.18 - 0.87
0.87 - 1.62
1.62 - 3.01
3.01 - 6.00
6.00 - 11.15


MANAGEMENT OPTIONS PER GRU

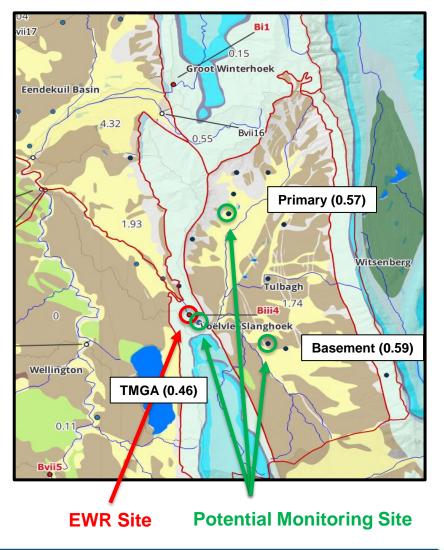
GRU	Allocable Factor per GRU	Groundwaters Contribution to Baseflow per GRU (M m ³ /a)	Groundwaters Contribution to EWR Management Option
Adamboerskraal	0.53	6.00	3
Atlantis	0.84	0.08	1
Cape Flats	0.36	0.51	2
Cape Peninsula	0.38	5.43	3
Cape Town Rim	0.39	0.87	2
Darling	0.82	0.03	1
Drakensteinberge	0.85	2.88	2
Eendekuil Basin	0.21	6.95	3
Elandsfontein	0.31	6.39	3
Groot Winterhoek	0.80	0.77	1
Langebaan Road	0.18	5.52	3
Malmesbury	0.39	1.18	2
Middle-Lower Berg	0.56	11.15	3
Northern Swartland	0.88	0.20	1
Paarl-Franschhoek	0.24	3.01	3
Piketberg	0.37	2.07	3
Steenbras- Nuweberg	0.56	1.16	2
Stellenbosch-Helderberg	0.63	2.34	2
Tulbagh	0.14	1.28	3
Voëlvlei-Slanghoek	0.85	1.62	2
Vredenburg	0.70	0.00	1
Wellington	0.52	6.75	3
Wemmershoek	0.80	3.59	2
Witzenberg	0.87	0.18	1
Yzerfontein	0.70	0.02	1
TOTAL		69.98	


Management Options	Monitoring Description		
1	 Low Priority Limited Selection of Monitoring Sites Infrequent Monitoring 		
2	 Moderate Priority Moderate Selection of Monitoring Sites 		
	 Increased Monitoring Frequency 		
	High Priority		
3	 Numerous Selection of Monitoring Sites 		
	 High-Frequency Monitoring 		

SITE SELECTION FOR GROUNDWATERS CONTRIBUTION TO THE EWR

- NOTE 1: GRUs do not necessarily follow surface water catchment boundaries, so it is necessary to split groundwater contribution to baseflow per catchment by GRU.
- NOTE 2: Contribution to baseflow should be aquifer specific.

Incremental groundwater contribution to baseflow (Mm³/a)



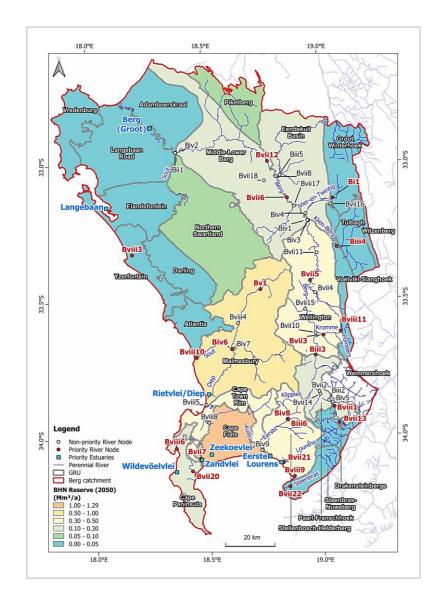
Node	Incremental Baseflow
Bi1	0.15
Bii1	0.01
Biii2	3.29
Biii3	0.00
Biii4	1.74
Biii5	0.04
Biii6	0.70

Node	Fractured and Intergranu Iar Basement	Nardouw Aquifer	Peninsula Aquifer	Primary/In tergranula r	Fractured and Intergranu Iar other
Bi1	1%	25%	51%	1%	22%
Bii1	46%	0%	0%	54%	0%
Biii2	2%	10%	55%	20%	14%
Biii3	30%	1%	14%	52%	2%
Biii4	34%	6%	21%	33%	5%
Biii5	83%	1%	7%	5%	4%
Biii6	23%	0%	43%	33%	1%

Node	Fractured and Intergranu Iar Basement	Nardouw Aquifer	Peninsula Aquifer	Primary/ Intergranu Iar	Fractured and Intergranu Iar other
Bi1	0.00	0.04	0.08	0.00	0.03
Bii1	0.01	0.00	0.00	0.01	0.00
Biii2	0.07	0.33	1.81	0.66	0.46
Biii3	0.00	0.00	0.00	0.00	0.00
Biii4	0.59	0.10	0.36	0.57	0.09
Biii5	0.03	0.00	0.00	0.00	0.00
Biii6	0.16	0.00	0.30	0.23	0.01

POTENTIAL MONITORING SITES FOR GROUNDWATERS CONTRIBUTION TO EWR

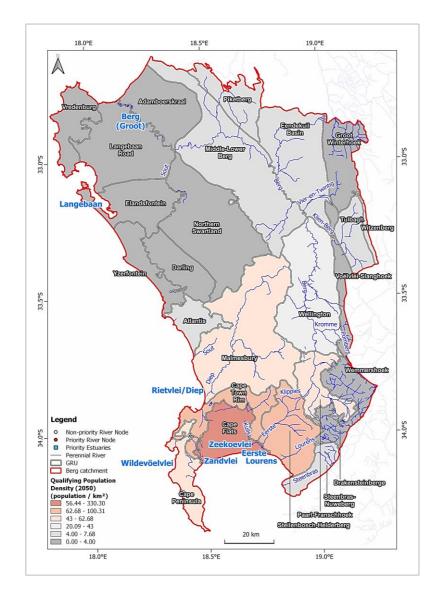
SITE SELECTION CRITERIA

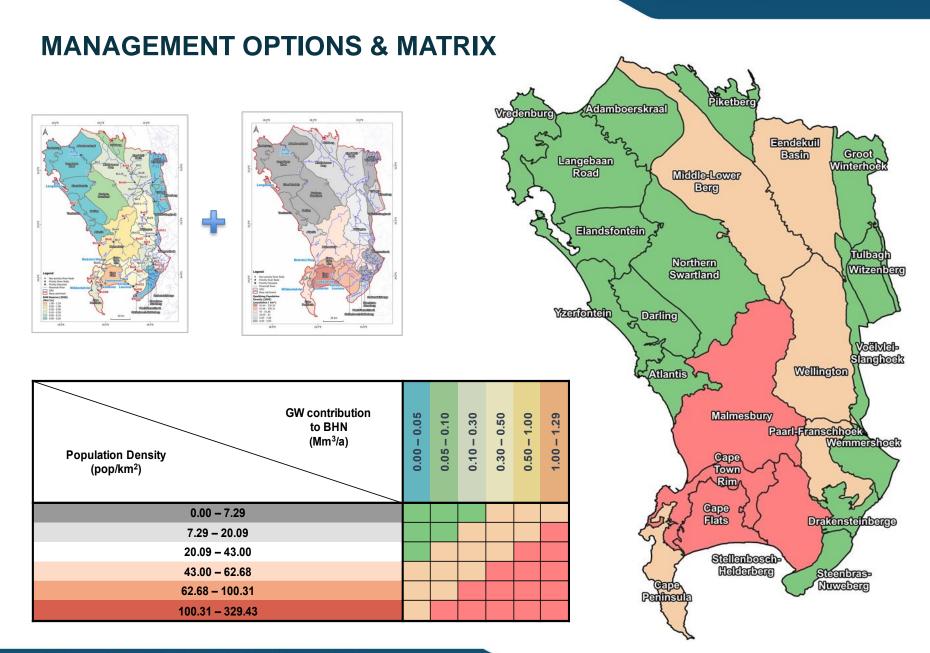

- 1. Existing Boreholes (DWS or Private)
- 2. Proximity to EWR Node
- 3. Aquifer Specific Unit
- 4. Location in GRU (i.e., up gradient or down gradient) of EWR Node
- 5. Expert Opinion

GROUNDWATERS CONTRIBUTION TO THE BHN RESERVE

MANAGEMENT OPTIONS FOR GROUNDWATERS CONTRIBUTION TO THE BHN RESERVE

Basic Human Needs: Completed as part of Deliverable 3.5 (i.e., SC 07b – Most Likely Future Scenario)

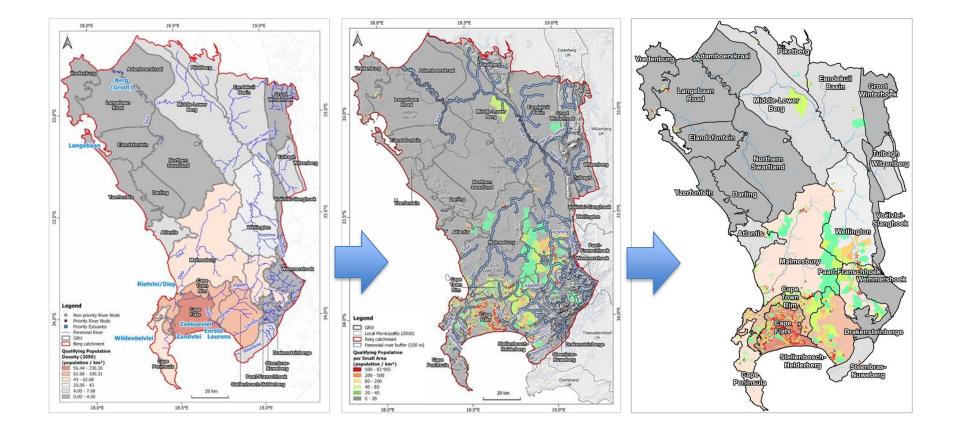

Groundwaters Contribution to BHN (M m³/a)	
0.00 - 0.05	
0.05 - 0.10	
0.10 – 0.30	
0.30 – 0.50	
0.50 – 1.00	
1.00 – 1.29	

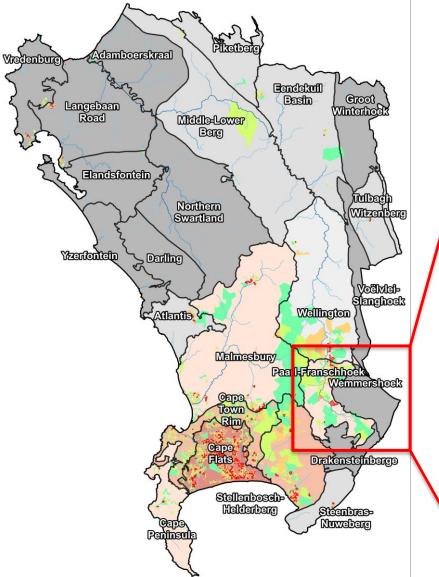


MANAGEMENT OPTIONS FOR GROUNDWATERS CONTRIBUTION TO THE BHN RESERVE

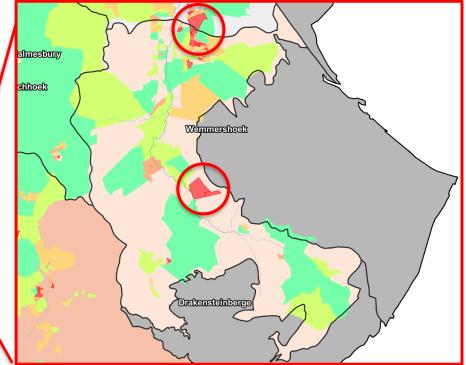
Qualifying Population Density: Completed as part of Deliverable 3.5 (i.e., SC 07b – Most Likely Future Scenario)

Qualifying Population per km ²
0.00 - 7.29
7.29 – 20.09
20.09 - 43.00
43.00 - 62.68
62.68 - 100.31
100.31 – 329.43

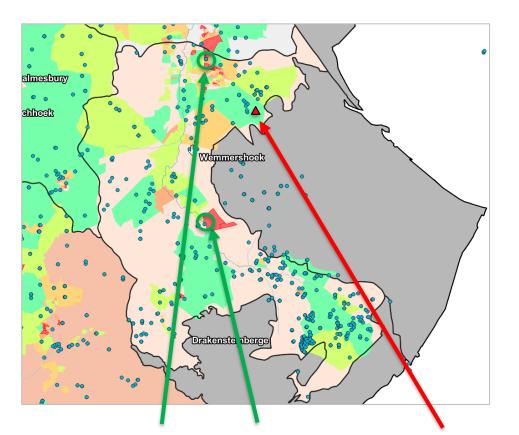

MANAGEMENT OPTIONS PER GRU


GRU	Groundwaters Contribution to the BHN Reserve (M m ³ /a)	Qualifying Population Density per GRU (pop/km²)	Groundwaters Contribution to BHN Management Option
Adamboerskraal	0.01	2.50	1
Atlantis	0.05	20.09	1
Cape Flats	1.29	329.43	3
Cape Peninsula	0.16	56.44	2
Cape Town Rim	0.36	100.31	3
Darling	0.03	7.72	1
Drakensteinberge	0.01	3.94	1
Eendekuil Basin	0.16	18.16	2
Elandsfontein	0.01	1.97	1
Groot Winterhoek	0.03	7.68	1
Langebaan Road	0.03	4.00	1
Malmesbury	0.64	43.46	3
Middle-Lower Berg	0.16	11.82	2
Northern Swartland	0.09	7.90	1
Paarl-Franschhoek	0.21	62.68	2
Piketberg	0.06	17.57	1
Steenbras- Nuweberg	0.02	13.11	1
Stellenbosch-Helderberg	0.46	87.79	3
Tulbagh	0.05	17.74	1
Voëlvlei-Slanghoek	0.01	6.11	1
Vredenburg	0.02	6.24	1
Wellington	0.39	39.70	2
Wemmershoek	0.00	1.27	1
Witzenberg	0.00	11.22	1
Yzerfontein	0.02	5.84	1
TOTAL	4.27		

Management Options	Monitoring Description
1	 Low Priority Limited Selection of Monitoring Sites Infrequent Monitoring
2	 Moderate Priority Moderate Selection of Monitoring Sites Increased Monitoring Frequency
3	 High Priority Numerous Selection of Monitoring Sites High-Frequency Monitoring


SITE SELECTION FOR GROUNDWATERS CONTRIBUTION TO BHN

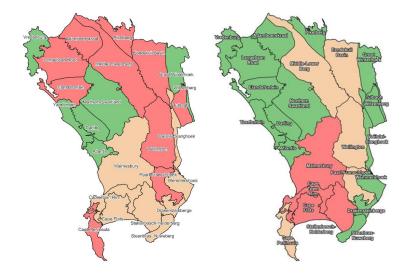
NOTE 1: Qualifying population density varies across GRUs and may not be evenly distributed across the area. For example, there may be small areas with extremely high population density and large areas that are sparsely populated.


Population Density per Small Area

POTENTIAL MONITORING SITES FOR GROUNDWATERS CONTRIBUTION TO BHN

Site Selection Criteria

- 1. Existing Site (DWS or Private)
- 2. Established Water Protection Areas
- 3. Aquifer Specific Unit
- 4. Expert opinion



Potential BHN Monitoring Site Background WQ Monitoring Site

DEFINING GROUNDWATER MANGEMENT OBJECTIVES

DEFINING GROUNDWATER MANGEMENT OBJECTIVES

GRU	Groundwaters Contribution to EWR Management Option	Groundwaters Contribution to BHN Management Option
Adamboerskraal	3	1
Atlantis	1	1
Cape Flats	2	3
Cape Peninsula	3	2
Cape Town Rim	2	3
Darling	1	1
Drakensteinberge	2	1
Eendekuil Basin	3	2
Elandsfontein	3	1
Groot Winterhoek	1	1
Langebaan Road	3	1
Malmesbury	2	3
Middle-Lower Berg	3	2
Northern Swartland	1	1
Paarl-Franschhoek	3	2
Piketberg	3	1
Steenbras- Nuweberg	2	1
Stellenbosch-Helderberg	2	3
Tulbagh	3	1
Voëlvlei-Slanghoek	2	1
Vredenburg	1	1
Wellington	3	2
Wemmershoek	2	1
Witzenberg	1	1
Yzerfontein	1	1

Management Options	Monitoring Description										
1	Low PriorityLimited Selection of Monitoring Sites										
	Infrequent Monitoring										
	Moderate Priority										
2	Moderate Selection of Monitoring Sites										
	Increased Monitoring Frequency										
	High Priority										
3	Numerous Selection of Monitoring Sites										
	High-Frequency Monitoring										

Management Options and Monitoring Description

MANAGEMENT OPTION III MANAGEMENT OPTION II MANAGEMENT OPTION I **MONTHLY / QUARTERLY** QUARTERLY **BI ANNUALY Groundwater Levels: Groundwater Levels:** Groundwater Levels: Telemetry / Level Logger Level logger at selected sites Manual Measurement at selected Continuous Daily Records Manual measurement at all sites sites Monthly / Quarterly Records Quarterly / Bi Annual Records **Groundwater Quality: Groundwater Quality: Groundwater Quality:** Quarterly sampling of the following Biannual sampling of the following Quarterly sampling of the following parameters parameters (summer & winter) parameters **Standard Parameters Standard Parameters Standard Parameters** pH, EC, Ca, Mg, Na, K, Palk, MAlk, F, Cl, pH, EC, Ca, Mg, Na, K, Palk, MAlk, F, Cl, pH, EC, Ca, Mg, Na, K, Palk, MAlk, F, Cl, PO4, SO4 PO4, SO4 PO4, SO4 Site specific additions as per RQO Site specific additions as per RQO Site specific additions as per RQO Nutrients, Salts, Toxins, Pathogens, Nutrients, Salts, Toxins, Pathogens, Nutrients, Salts, Toxins, Pathogens, System Variables, etc. System Variables, etc. System Variables, etc.

Site specific additions of nutrients (BHN/EWR) NO2, NO3, NH4

Site specific additions as per BHN (microbiological) E coli, Total Coliforms, Fecal Coliforms Site specific additions of nutrients (BHN/EWR) NO2, NO3, NH4

<u>Site specific additions as per BHN</u> (microbiological) E coli, Total Coliforms, Fecal Coliforms

<u>Site specific additions of nutrients</u> (BHN/EWR) NO2, NO3, NH4

Site specific additions as per BHN (microbiological) E coli, Total Coliforms, Fecal Coliforms

LIMITATIONS

Note: It is important to appreciate that this procedure has certain limitations, these include:

- 1. The **monitoring programme** is not determined for individual users, but rather **for the Berg** Catchment as a whole.
- 2. The Reserve Limits and associated RQOs <u>do not replace</u> the need for <u>other monitoring</u> <u>programmes.</u> Individual users and developments are still required to have their own monitoring programmes and should ensure that the data is shared with DWS to supplement their monitoring programme.

CAPACITY BUILDING PROGRAMME

CAPACITY BUILDING PROGRAMME

Task	Description	Period	Status			
2.1	Gap Analysis and Water Resource Model Inventory: data collection, review, and analysis	June 2022	Complete			
3.1	GRU delineation	August 2022	Complete			
3.4	Water Resource Modelling: 1 week groundwater modelling training.	January 2023	Complete			
3.8	Reserve Determination: Stakeholder Engagement Workshop and provide inputs to the Predictive Scenarios (and associated methodology) used to develop the most likely future scenario for the catchment.	August 2023	Complete			

MANAGEMENT TASKS AND DELIVERABLES

PROJECT PROGRESS STATUS

2022									2023											20	24		
Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb
			DAT	A COLLE	CTION	AND CO	OLLATIC	ON															
			Х	Repor	Reporting (Deliverable 2.1)																		
			Х	Repor	Reporting (Deliverable 2.2)																		
				STEP 1: INITIATE GROUNDWATER RESERVE STUDY																			
			STEP 2: WATER RESOURCE UNIT DELINEATION																				
	X Reporting (Deliverable 3.1)																						
							STEP 3	3: ECOL	OGICA	L STATI	JS AND	REFER	ENCE C	ONDITI	ONS								
							Х	Repo	rting (E	Delivera	able 3.2	2)											
											STEP	4: DET	RMIN	E BHN A	ND EW	/R							
											х	Repo	rting (D	elivera	ble 3.3)							
			ST	EP 5:OP	ERATIC	ONAL SC	ENARIO	DS AND	socio	-ECON	оміс												
R									Reporti	ng (Del i	iverable	e 3.4)	Х										
STEP 6: EVALUATE S								SCENA	RIOS W	ITH ST	KEHOI	DERS											
												R	eportir	ng (Deli v	verable	3.5)	х						
STEP 7: MONITORING PROGRAMME																							
															R	eporti	ng (Del i	iverabl	e 3.6)	Х			
STEP 8: GAZETTE AND IMPLEMENT RESERVE																							
Reporting (Deliverable											e 3.7)	Х											
Database (Deliverable										e 3.8)	Х												
Reporting (Deliverable 3											e 3 .9)	Х											

PROGRAMME OF UPCOMING EVENTS

PROGREAMME OF UPCOMING EVENTS

November 2023

- Management:
 - 1. Project Stakeholder Committee Meeting (PSC 05) held in mid-November 2023
- Deliverable:
 - 1. Monitoring Programme Report Final Draft (D3.7)

December 2023

- Tasks:
 - 1. Task 3.8: Gazette & Implementation of the Reserve
- Deliverable:
 - 1. Groundwater Reserve Determination Progress Report (D3.7)

THANK YOU